

United States Environmental Protection Agency

Current and Future Emissions Standards for On-Highway and Nonroad Diesel Engines Greg Orehowsky Office of Transportation and Air Quality

Presentation Overview

- Emissions Testing
- · Need for New Standards
- Averaging Banking and Trading (AB&T)
- Diesel Fuel Control
- Emissions Control 101
- New standards
 - On-highway Heavy-duty
 - Nonroad Diesel
- Nonroad Equipment Flexibility

Emissions Testing

- Cars, light-duty trucks, and motorcycles are tested as complete vehicles
 - Vehicles driven on a chassis dynamometer
 - · Vehicle speed versus time
 - Emissions are measured in grams per mile
 - Certification completed by Ann Arbor, MI office
- Heavy-duty trucks, nonroad equipment, and marine engines tested on an engine dynamometer
 - Too many vehicle configurations to test
 - Limited number of engine manufacturers compared to vehicle/equipment manufacturers
 - Emissions measured on a gram per work basis, g/bhp-hr or g/kW-hr
 - Engines tested at various engine speeds and loads
 - · Gaseous emissions measuring continuously
 - · Particulate mater captured on filters and weighed
 - Certification completed by Washington, DC office

New Emission Standards

- The Tier 2 rule for passenger cars and light-duty trucks set the pattern for mobile source emissions control
 - Regulations addressed gasoline fuel and light-duty vehicles as a system
 - Reduced sulfur in gasoline enables vehicle emission control system to reduce emissions to low levels
 - 2004 model year phase-in
- 2007 on-highway diesel, Tier 4 nonroad, and proposed locomotive/marine regs are following this approach
 - Diesel engines significant sources of NOx and PM
 - NOx is an ozone precursor
 - Ultra low sulfur diesel (ULSD) < 15 ppm sulfur needed
 - Low sulfur diesel 300-500 ppm sulfur

Averaging, Banking and Trading

- Engines are certified as families
 - An engine family is a group of engine with similar design characteristics which result in similar emissions
- AB&T is a voluntary program
 - Prior to AB&T, emission standard was a bright line not to be crossed
 - AB&T allows engines certified above the emission standard to be offset by engines certified below the standard
 - Engine families in AB&T certify to Family Emission Limits (FELs)
 - An FEL, a number above or below the standard, becomes the standard for the engine family
 - An engine family with an FEL of 4.1 g/kW-hr uses credits versus a 4.0 standard
 - An engine family with an FEL of 3.9 g/kW-hr generates credits
 - Number of credits =
 - #engines x (Standard-FEL) x engine power x useful life of engine
 - Useful life is the period (miles or hours of operation, and years) engine must meet standards

Averaging, Banking, and Trading

- When a manufacturer averages, the credits are used between engine families in the same year
- Banking allows a manufacturer to accumulate credits for use in future years
- Trading allows manufacturers to sell credits to each other. This rarely happens
- Credit limitations
 - Upper FEL cap for credit users, usually the previous standard
 - Credits can only be used in the same industry
 - · On-highway credits can not be used for nonroad engines

Averaging, Banking and Trading

- Credit limitations (cont.)
 - Credits are only for certification
 - PM and NOx or NMHC+NOx credits only
 - · Averaging sets limit credit transfer within an industry
 - For example, light-heavy, medium-heavy and heavy-heavy for on-highway
 - Cannot be used to correct problems with in-use engines
- AB&T advantages
 - Allows engine manufacturers flexibility in meeting emissions standards
 - Set FEL to have more compliance margin
 - Allows for small volume old technology engines to stay in coroduction after a standards change

ULSD Implementation Schedule

Who	Covered Fuel	2006	2007	2008	2009	2010	2011	2012	2013	2014
	Highway Diesel Fuel					100% 15 ppm (including small refiner fuel)				
Large Refiner & Importer	Nonroad		500	500	500		16		2	2
Large Refiner & Importer	Loco and Marine		500	500	500	500	500	10	10	
	NRLM with Credits (Not in NE or AK)					500	500	500	500	10
Small Refiner	NRLM (Not in NE, w/ approval in AK)					500	500	500	500	
Transmix Processor & In-use	Nonroad (Not in NE or AK)					500	500	500	500	
Transmix Processor & In-use	Loco and Marine (Not in NE or AK)					500	500	500	500	500

ULSD Implementation for 2007 On-highway

- Production is at 90% of MV diesel and has been since the fall of 2006.
 - At retail levels, for Q1 of 2007 data have shown 90% of pumps contain fuel that is at or below 15 ppm
 - 4-5 cents estimated increase per gallon fuel, partially off-set by maintenance savings of ~ 1 cent per gallon
 - · Includes cost for lubricity improvement
 - We are still addressing the need for improved labeling so consumers are aware of the true availability of ULSD
 - Office of Enforcement and Compliance Assurance (OECA) is starting to fine retailers without proper labels
- · ULSD enables aftertreatment technology

- In-cylinder Control
 - Cylinder design
 - High pressure fuel
 - Injection timing retard
 - Multiple injection events
 - Internal EGR
- EGR
 - Recirculate cooled exhaust gas to lower combustion temperature and control NOx
- Diesel Oxidation Catalyst (DOC)
 - Catalyst oxidizes hydrocarbons and PM

- Diesel Particulate Filter (DPF)
 - Soot filtered from exhaust
 - The filter is cleaned (regenerated)
 - Passively exhaust temperatures during certain modes of normal operation are high enough to burn off soot
 - Some filters are designed to only regenerate this way
 - Actively Once filter reaches a certain soot loading, engine computer introduces additional fuel to raise exhaust temperature and burn soot
 - Drivers made aware of need for and occurrence of regeneration
 - » In some applications, can delay regeneration until appropriate
 - Filters will eventually fill with ash and need to be removed for cleaning
 - » 150,000 miles or more for most heavy-duty vehicles
 - » May be less for vehicles which can not accommodate large enough filter

- NOx adsorbers
 - Work like catalysts on passenger cars
 - NOx is adsorbed on to surface of catalyst
 - Once catalysts sites are full of NOx, exhaust is made fuel rich
 - Hydrocarbons in fuel react with NOx to form CO₂, N₂ and H₂O
 - High levels of sulfur in fuel will poison catalyst
 - · Sulfur adsorbs on sites were NOx would normally be held
 - Even with ULSD, catalyst will occasionally need to be cleaned of sulfur.
 - Sulfur removal done under fuel rich conditions similar to NOX removal
 - Maybe too costly for all applications

Linehaul trucks

- Selective Catalytic Reduction (SCR)
 - NOx is catalytically reduced by NH₃
 - $NO_X + NH_3 = N_2 + H_2 O$
 - Liquid urea decomposed to form NH₃ in exhaust
 - SCR has been used before
 - · Used on power plants
 - · Used on trucks in Europe
 - Likely to be on 2008 diesel passenger cars in U.S.
 - DDC and Volvo/Mack plan to use in 2010 trucks
 - Technology requires operator to refill urea tank
 - · Operator warning and incentive to refill tank
 - · System must have technology ensure urea quality
 - · Urea infrastructure must be in place
 - Dealerships
 - Emergency plan
 - Truck stops, gas stations, etc

On-highway HDDE

- PM and NOx emissions will be reduced by greater than 90% by 2010
 - In 2007, vast majority of engines certified to 0.01 g/bhp-hr down from 0.10 in 2006
 - · DPF required to reach this level
 - A few engines certified without DPFs through early introduction credit program
- NOx emissions standard phased in through 2010
 - 50% of 2007-2009 engines must meet 0.2 g/bhp-hr NOx
 - 100% in 2010
 - · NOx aftertreatment needed for this standard
 - 50% of engines in 2007-2009 could meet old NMHC+NOx standard of 2.5 g/bhp-hr
 - Or 100% of engines could per certified at half way between 2004 and 2010 NOx standards
 - 1.2 -1.3 gram/bhp-hr NOx
 - · EGR used to meet this standard

2007 On-highway Implementation

- 50 Heavy-duty Diesel engine families certified
 - 30 engine families at 1.1 1.3 NOx or NMHC+NOx
 - 6 engine families at 1.4 1.8 NOx or NMHC+NOx
 - 14 engine families at 1.9 2.5 NOx or NMHC+NOx
 - Credit users or phase-out engines
- Cummins Diesel pickup truck certified with NOx adsorber
- Most engines at 0.01 PM
 - 3 engine families at 0.10 PM
 - 3 for 2 engines from early introduction DPFs

2007-2010 On-highway Costs and Benefits

The program will prevent annually:

- Over 8,300 premature deaths
- Over 750,000 respiratory illnesses 1.5 million lost work days
- 2.6 million tons of NOx, 110,000 tons of PM, and 17,000 tons of toxic pollutants

Nonroad Diesel Emission Standards

- Nonroad diesel engines first regulated in 1996
 - These regulations do not cover locomotive and marine engines
 - · Locomotives and Marine have separate regulations
 - Emissions standards were phased in by engine power
 - By 2000, all power categories of engines were regulated
 - Initially, stationary engines were exempt but new engines are now meeting essentially same emission standards
- Reductions in emissions standards were done in tiers
 - Engines from 37-560 kW will all be Tier 3 by 2008
 - Engines from 0-37kW and > 560 kW are currently Tier 2
- Tier 4 Rule set new emission standards for all engines

Tier 4 Program Overview

- A systems approach of reducing nonroad fuel sulfur levels to enable advanced emission control technology
 - 500 ppm maximum sulfur nonroad, locomotive and marine diesel fuel in 2007
 - 15 ppm nonroad fuel in 2010
- Engine standards representing reductions of >95%
 PM and ~90% NOx
 - Standards phase in starting in 2008, fully phased in by 2014
 - Expect similar technologies that will be used on highway engines
- · California has same standards

Tier 4 Program Overview

Diesel Fuel

- Lubricity
 - During rulemaking process, issues were raised over loss of lubricity associated with decreased sulfur in fuel.
 - Specific to certain fuel systems which rely on fuel as lubricant
 - Similar concerns were raised in 1993 when on-highway went to 500 PPM sulfur
 - Some nonroad engines likely running on 500 PPM sulfur for some time
 - Additives used to improve lubricity
 - Inspect older engines for fuel leaks
 - Learn from on-highway experience
- Energy content about 1% lower for ULSD

Engine Standards Program 500 ppm NR fuel 15 ppm NR fuel 2007 2013 2014 2015 2004 2005 2006 2008 2010 2011 2012 hp 2009 <25 Tier 1 PM (reductions w/oxidation catalysts or engine-based control) **PM: 100%** NOx 25-75 PM (reduction w/oxidation catalysts or engine-based control) existing Tier 2 PM:100% 75-175 NOx: 50% 50% 100% existing Tier 3 PM: 100% 175-750 NOx: 50% 50% 50% 100% >750 PM &NOx: Tier 1 existing Tier 2 50% 50% 50% 100%

Percentages indicate portion of sales required to meet advanced emission control technology standards

2014 Non-Road CI Emission Standards (grams/kilowatt-hr)

Engine Power	Technology	СО	NMHC	NMHC +NOX	NOx	PM
kW< 19	Diesel Oxidation Catalyst	6.6		7.5		0.40
19 ≤ kW < 56	DPF	5.0		4.7		0.03
56 ≤ kW < 130	NOx aftertreatment and DPF	5.0	0.19		0.40	0.02
130 ≤ kW ≤ 560	NOx aftertreatment and DPF	3.5	0.19		0.40	0.02
kW > 560 Generators	NOx aftertreatment and DPF	3.5	0.19		0.67	0.03
kW > 560 All other	DPF	3.5	0.19		3.5	0.04

Interim Tier 4 Standards (g/kW-hr)

Engine Power	Year	СО	NMHC	NMHC+ NOX	NOx	PM
kW < 8	2008	8.0		7.5		0.40
8 ≤ kW < 19	2008	6.6		7.5		0.40
19 ≤ kW < 37	2008	5.5		7.5		0.30
19 ≤ kW < 37	2013	5.5		4.7		0.03
37 ≤ kW < 56	2008	5.0		4.7		0.30
37 ≤ kW < 56	2013	5.0		4.7		0.03
56 ≤ kW < 130 NOx Phase-in	2012- 2014	5.0	0.19		0.40	0.02
130 ≤ kW ≤ 560 NOx Phase-in	2012- 2014	3.5	0.19		0.40	0.02

Nonroad Benefits

- Program will prevent 9,600 premature deaths; 16,000 nonfatal heart attacks; & nearly 1 million lost work days on an annual basis in 2030
- Total annual benefits exceed \$80 billion/year in 2030, annual costs less than \$2 billion/year

Equipment Flexibility Program

- Equipment flexibility program, also known as the Transition Program for Equipment Manufacturers (TPEM)
 - Allows equipment manufacturers to use previous Tier engines in some of their equipment
 - For example an Tier 1 (1996 design) 200 Hp engine in 2003 under Tier 2 standards
 - Allows equipment manufacturers to phase-in redesign of equipment to accommodate latest emission control technology
 - EGR equipped engines may require larger radiator which results in an equipment redesign
 - Existing inventory of engines
 - A manufacturer may use up existing inventory of older engines in new equipment but can not stockpile older engines to avoid new standards
 - Engine manufacturer can produce previous Tier engines once notified by equipment manufacturer
 - · Equipment manufacturer must be involved in design process
 - For Tiers 1-3 equipment importer is considered a manufacturer
 Tier 4 prevents importers from being in program

Equipment Flexibility Program

- Tier 4 Programs
 - Percent of production
 - Allows 80 percent of engines summed over 7 years to use previous tier engines
 - For example, 20% of production for 4 years can be previous Tier
 - Exemption is specific for each power category
 - » Tier 3 has 9 power categories
 - » Tier 4 has 5 power categories
 - Generally requires most equipment in a power category to have compliant engines
 - Small Volume Allowance
 - Allows up to 200 engines per year in one engine family to be previous tier, not to exceed 700 over 7 years
 - For multiple engine families
 - » <130 kW, 525 over 7 years not to exceed 150 in a year
 - » >130kW, 350 over 7 years no to exceed 100 in a year

Equipment Flexibility Program

- Hardship Relief
 - Not for manufacturers who manufacturer both engines and equipment
 - Additional hardship relief may be requested
 - For engines greater than 19 kW
 - Small volume equipment manufacturer hardship for engines 19-37 kW

For More Information...

- 2007 Highway Diesel Rule:
 - http://www.epa.gov/otaq/diesel.htm
- Nonroad Diesel Rule
 - Copy of proposal and supporting documents are available from: http://www.epa.gov/nonroad-diesel/
- Equipment Flexibility
 - Yanira Reyes-Morales (reyes-morales.nydia@epa.gov)
 - Melvis Strickland (strickland.melvis@epa.gov)
- Specific questions:
 - Gregory Orehowsky (orehowsky gregory@epa.gov)
 - Cleophas Jackson (jackson.cleophas@epa.gov)

